python - Extracting the first day of month of a datetime type column in pandas -
i have following dataframe:
user_id purchase_date 1 2015-01-23 14:05:21 2 2015-02-05 05:07:30 3 2015-02-18 17:08:51 4 2015-03-21 17:07:30 5 2015-03-11 18:32:56 6 2015-03-03 11:02:30
and purchase_date
datetime64[ns]
column. need add new column df[month]
contains first day of month of purchase date:
df['month'] 2015-01-01 2015-02-01 2015-02-01 2015-03-01 2015-03-01 2015-03-01
i'm looking date_format(purchase_date, "%y-%m-01") m
in sql. have tried following code:
df['month']=df['purchase_date'].apply(lambda x : x.replace(day=1))
it works somehow returns: 2015-01-01 14:05:21
.
simpliest , fastest convert numpy array
values
, cast:
df['month'] = df['purchase_date'].values.astype('datetime64[m]') print (df) user_id purchase_date month 0 1 2015-01-23 14:05:21 2015-01-01 1 2 2015-02-05 05:07:30 2015-02-01 2 3 2015-02-18 17:08:51 2015-02-01 3 4 2015-03-21 17:07:30 2015-03-01 4 5 2015-03-11 18:32:56 2015-03-01 5 6 2015-03-03 11:02:30 2015-03-01
another solution floor
, pd.offsets.monthbegin(0)
:
df['month'] = df['purchase_date'].dt.floor('d') - pd.offsets.monthbegin(1) print (df) user_id purchase_date month 0 1 2015-01-23 14:05:21 2015-01-01 1 2 2015-02-05 05:07:30 2015-02-01 2 3 2015-02-18 17:08:51 2015-02-01 3 4 2015-03-21 17:07:30 2015-03-01 4 5 2015-03-11 18:32:56 2015-03-01 5 6 2015-03-03 11:02:30 2015-03-01
df['month'] = (df['purchase_date'] - pd.offsets.monthbegin(1)).dt.floor('d') print (df) user_id purchase_date month 0 1 2015-01-23 14:05:21 2015-01-01 1 2 2015-02-05 05:07:30 2015-02-01 2 3 2015-02-18 17:08:51 2015-02-01 3 4 2015-03-21 17:07:30 2015-03-01 4 5 2015-03-11 18:32:56 2015-03-01 5 6 2015-03-03 11:02:30 2015-03-01
last solution create month period
to_period
:
df['month'] = df['purchase_date'].dt.to_period('m') print (df) user_id purchase_date month 0 1 2015-01-23 14:05:21 2015-01 1 2 2015-02-05 05:07:30 2015-02 2 3 2015-02-18 17:08:51 2015-02 3 4 2015-03-21 17:07:30 2015-03 4 5 2015-03-11 18:32:56 2015-03 5 6 2015-03-03 11:02:30 2015-03
... , datetimes
to_timestamp
, bit slowier:
df['month'] = df['purchase_date'].dt.to_period('m').dt.to_timestamp() print (df) user_id purchase_date month 0 1 2015-01-23 14:05:21 2015-01-01 1 2 2015-02-05 05:07:30 2015-02-01 2 3 2015-02-18 17:08:51 2015-02-01 3 4 2015-03-21 17:07:30 2015-03-01 4 5 2015-03-11 18:32:56 2015-03-01 5 6 2015-03-03 11:02:30 2015-03-01
there many solutions, so:
timings:
rng = pd.date_range('1980-04-03 15:41:12', periods=100000, freq='20h') df = pd.dataframe({'purchase_date': rng}) print (df.head()) in [300]: %timeit df['month1'] = df['purchase_date'].values.astype('datetime64[m]') 100 loops, best of 3: 9.2 ms per loop in [301]: %timeit df['month2'] = df['purchase_date'].dt.floor('d') - pd.offsets.monthbegin(1) 100 loops, best of 3: 15.9 ms per loop in [302]: %timeit df['month3'] = (df['purchase_date'] - pd.offsets.monthbegin(1)).dt.floor('d') 100 loops, best of 3: 12.8 ms per loop in [303]: %timeit df['month4'] = df['purchase_date'].dt.to_period('m').dt.to_timestamp() 1 loop, best of 3: 399 ms per loop #maxu solution in [304]: %timeit df['month5'] = df['purchase_date'].dt.normalize() - pd.offsets.monthbegin(1) 10 loops, best of 3: 24.9 ms per loop #maxu solution 2 in [305]: %timeit df['month'] = df['purchase_date'] - pd.offsets.monthbegin(1, normalize=true) 10 loops, best of 3: 28.9 ms per loop #wen solution in [306]: %timeit df['month6']= pd.to_datetime(df.purchase_date.astype(str).str[0:7]+'-01') 1 loop, best of 3: 214 ms per loop
Comments
Post a Comment